472 research outputs found

    Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA

    Get PDF
    This paper examines the influence of the Raf Kinase Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK) signalling pathway [5] through modelling in a Markovian process algebra, PEPA [11]. Two models of the system are presented, a reagent-centric view and a pathway-centric view. The models capture functionality at the level of subpathway, rather than at a molecular level. Each model affords a different perspective of the pathway and analysis. We demonstrate the two models to be formally equivalent using the timing-aware bisimulation defined over PEPA models and discuss the biological significance

    Na+/Ca(2+ )Exchanger a Druggable Target to Promote beta -Cell Proliferation and Function

    Get PDF
    An important feature of type 2 diabetes is a decrease in <i>β</i> -cell mass. Therefore, it is essential to find new approaches to stimulate <i>β</i> -cell proliferation. We have previously shown that heterozygous inactivation of the Na <sup>+</sup> /Ca <sup>2+</sup> exchanger (isoform 1; NCX1), a protein responsible for Ca <sup>2+</sup> extrusion from cells, increases <i>β</i> -cell proliferation, mass, and function in mice. Here, we show that <i>Ncx</i> 1 inactivation also increases <i>β</i> -cell proliferation in 2-year-old mice and that NCX1 inhibition in adult mice by four small molecules of the benzoxyphenyl family stimulates <i>β</i> -cell proliferation both <i>in vitro</i> and <i>in vivo</i> . NCX1 inhibition by small interfering RNA or small molecules activates the calcineurin/nuclear factor of activated T cells (NFAT) pathway and inhibits apoptosis induced by the immunosuppressors cyclosporine A (CsA) and tacrolimus in insulin-producing cell. Moreover, NCX1 inhibition increases the expression of <i>β</i> -cell-specific genes, such as <i>Ins1, Ins2,</i> and <i>Pdx</i> 1, and inactivates/downregulates the tumor suppressors retinoblastoma protein (pRb) and miR-193a and the cell cycle inhibitor p53. Our data show that Na <sup>+</sup> /Ca <sup>2+</sup> exchange is a druggable target to stimulate <i>β</i> -cell function and proliferation. Specific <i>β</i> -cell inhibition of Na <sup>+</sup> /Ca <sup>2+</sup> exchange by phenoxybenzamyl derivatives may represent an innovative approach to promote <i>β</i> -cell regeneration in diabetes and improve the efficiency of pancreatic islet transplantation for the treatment of the disease

    Exhaustive identification of steady state cycles in large stoichiometric networks

    Get PDF
    BACKGROUND: Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. RESULTS: We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. CONCLUSION: The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable

    Deterministic mechanical model of T-killer cell polarization reproduces the wandering of aim between simultaneously engaged targets

    Get PDF
    T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell-cell interactions. Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the immune response. The killing apparatus can also oscillate next to the cell-cell interface. When two target cells are engaged by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell's fidgety indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate wandering of aim in T-killer cells has a purely mechanical and deterministic explanation. © 2009 Kim, Maly

    Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells

    Get PDF
    The aim of this paper is to present a systematic methodology to design macroscopic bioreaction models for cell cultures based upon metabolic networks. The cell culture is seen as a succession of phases. During each phase, a metabolic network represents the set of reactions occurring in the cell. Then, through the use of the elementary flux modes, these metabolic networks are used to derive macroscopic bioreactions linking the extracellular substrates and products. On this basis, as many separate models are obtained as there are phases. Then, a complete model is obtained by smoothly switching from model to model. This is illustrated with batch cultures of Chinese hamster ovary cells

    Immune features that afford protection from clinical disease versus sterilizing immunity to Bordetella pertussis infection in a nonhuman primate model of whooping cough

    Get PDF
    The respiratory bacterial infection caused by Bordetella pertussis (whooping cough) is the only vaccine-preventable disease whose incidence has been increasing over the last 3 decades. To better understand the resurgence of this infection, a baboon animal model of pertussis infection has been developed. Naïve baboons that recover from experimental pertussis infection are resistant both to clinical disease and to airway colonization when re-challenged. In contrast, animals vaccinated with acellular pertussis vaccine and experimentally challenged do not develop disease, but airways remain colonized for 4-6 weeks. We explored the possibility that the IgG antibody response to pertussis infection is qualitatively different from antibodies induced by acellular pertussis vaccination. IgG was purified from pertussis-convalescent baboons shown to be resistant to pertussis disease and airway colonization. Purified IgG contained high titers to pertussis toxin, pertactin, and filamentous hemagglutinin. This pertussis-immune IgG or control IgG was passively transferred to naïve, juvenile baboons before experimental airway pertussis inoculation. The control animal that received normal IgG developed a typical symptomatic infection including leukocytosis, cough and airway colonization for 4 weeks. In contrast, baboons that received convalescent IgG maintained normal WBC counts and were asymptomatic. However, despite remaining asymptomatic, their airways were colonized for 4-6 weeks with B. pertussis. All animals developed IgG and IgA anti-pertussis antibody responses. Interestingly, the clearance of B. pertussis from airways coincided with the emergence of a serum anti-pertussis IgA response. These studies demonstrate that passive administration of pertussis-specific IgG from previously infected animals can prevent clinical disease but does not affect prolonged airway colonization with B. pertussis. This outcome is similar to that observed following acellular pertussis vaccination. Understanding immune mechanisms—other than IgG—that are capable of preventing airway colonization with B. pertussis will be critical for developing more effective vaccines to prevent whooping cough

    The NASA Exoplanet Archive: Data and Tools for Exoplanet Research

    Full text link
    We describe the contents and functionality of the NASA Exoplanet Archive, a database and tool set funded by NASA to support astronomers in the exoplanet community. The current content of the database includes interactive tables containing properties of all published exoplanets, Kepler planet candidates, threshold-crossing events, data validation reports and target stellar parameters, light curves from the Kepler and CoRoT missions and from several ground-based surveys, and spectra and radial velocity measurements from the literature. Tools provided to work with these data include a transit ephemeris predictor, both for single planets and for observing locations, light curve viewing and normalization utilities, and a periodogram and phased light curve service. The archive can be accessed at http://exoplanetarchive.ipac.caltech.edu.Comment: Accepted for publication in the Publications of the Astronomical Society of the Pacific, 4 figure

    Complex networks theory for analyzing metabolic networks

    Full text link
    One of the main tasks of post-genomic informatics is to systematically investigate all molecules and their interactions within a living cell so as to understand how these molecules and the interactions between them relate to the function of the organism, while networks are appropriate abstract description of all kinds of interactions. In the past few years, great achievement has been made in developing theory of complex networks for revealing the organizing principles that govern the formation and evolution of various complex biological, technological and social networks. This paper reviews the accomplishments in constructing genome-based metabolic networks and describes how the theory of complex networks is applied to analyze metabolic networks.Comment: 13 pages, 2 figure

    Functional cartography of complex metabolic networks

    Full text link
    High-throughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. Here, we propose a methodology that enables us to extract and display information contained in complex networks. Specifically, we demonstrate that one can (i) find functional modules in complex networks, and (ii) classify nodes into universal roles according to their pattern of intra- and inter-module connections. The method thus yields a ``cartographic representation'' of complex networks. Metabolic networks are among the most challenging biological networks and, arguably, the ones with more potential for immediate applicability. We use our method to analyze the metabolic networks of twelve organisms from three different super-kingdoms. We find that, typically, 80% of the nodes are only connected to other nodes within their respective modules, and that nodes with different roles are affected by different evolutionary constraints and pressures. Remarkably, we find that low-degree metabolites that connect different modules are more conserved than hubs whose links are mostly within a single module.Comment: 17 pages, 4 figures. Go to http://amaral.northwestern.edu for the PDF file of the reprin
    corecore